Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 48]
Задача
66267
(#9.8)
|
|
Сложность: 5- Классы: 9,10,11
|
Диагонали вписанного четырёхугольника ABCD пересекаются в точке M. Окружность ω касается отрезка MA в точке P, отрезка MD в точке Q и описанной окружности Ω четырёхугольника ABCD в точке X. Докажите, что X лежит на радикальной оси описанных окружностей ωQ и ωP треугольников ACQ и BDP.
Задача
66275
(#10.8)
|
|
Сложность: 4+ Классы: 9,10,11
|
Дан неравнобедренный треугольник ABC, AA1 – его биссектриса, A2 – точка касания вписанной окружности со стороной BC. Аналогично определяются точки B1, B2, C1, C2. Пусть O – центр описанной окружности треугольника, I – центр вписанной окружности. Докажите, что радикальный центр описанных окружностей треугольников AA1A2, BB1B2, CC1C2, лежит на прямой OI.
Задача
65797
(#9)
|
|
Сложность: 3 Классы: 8,9
|
В прямоугольном треугольнике ABC из вершины прямого угла C опущена высота CH. В треугольники ACH и BCH вписали окружности; O1 и O2 – их центры; P1 и P2 – их точки касания с AC и BC. Докажите, что прямые O1P1 и O2P2 пересекаются на AB.
Задача
65798
(#10)
|
|
Сложность: 4- Классы: 8,9,10
|
По стороне AB треугольника ABC движется точка X, а по описанной окружности Ω – точка Y так, что прямая XY проходит через середину дуги AB. Найдите геометрическое место центров описанных окружностей треугольников IXY, где I – центр вписанной окружности треугольника ABC.
Задача
65799
(#11)
|
|
Сложность: 3+ Классы: 8,9
|
Восстановите треугольник ABC по вершине B, центру тяжести и точке пересечения L симедианы, проведённой из вершины B, с описанной окружностью.
Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 48]