ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 66322  (#8.6)

Темы:   [ Вписанные и описанные окружности ]
[ Покрытия ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
Сложность: 3+
Классы: 8,9

Остроугольный треугольник разбили медианой на два меньших треугольника.
Докажите, что каждый из них можно накрыть полукругом, равным половинке описанного круга исходного треугольника.

Прислать комментарий     Решение

Задача 66304  (#8.7)

Темы:   [ Правильные многоугольники ]
[ Три прямые, пересекающиеся в одной точке ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Подобные фигуры ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4-
Классы: 8,9

На плоскости даны два правильных тринадцатиугольника A1A2...A13 и B1B2...B13, причём точки B1 и A13 совпадают и лежат на отрезке A1B13, а многоугольники лежат по одну сторону от этого отрезка. Докажите, что прямые A1A9, B13B8 и A8B9 проходят через одну точку.

Прислать комментарий     Решение

Задача 66305  (#8.8)

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Трапеции (прочее) ]
[ Вписанные и описанные окружности ]
[ Вписанный угол равен половине центрального ]
[ Гомотетия помогает решить задачу ]
[ Замечательное свойство трапеции ]
Сложность: 4
Классы: 8,9

Автор: Tran Quang Hung

Вокруг квадрата ABCD описана окружность. Точка P лежит на дуге CD этой окружности, не содержащей других вершин квадрата. Прямые PA, PB пересекают диагонали BD, AC соответственно в точках K, L. Точки M, N – проекции K, L соответственно на CD, а Q – точка пересечения прямых KN и ML. Докажите, что прямая PQ делит отрезок AB пополам.

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .