ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 1]      



Задача 66914  (#2 [8 кл])

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3
Классы: 8,9

Четырехугольник $ABCD$ – вписанный. Окружность, проходящая через точки $A$ и $B$, пересекает диагонали $AC$ и $BD$ в точках $E$ и $F$ соответственно. Пусть прямые $AF$ и $BC$ пересекаются в точке $P$, а прямые $BE$ и $AD$ – в точке $Q$. Докажите, что $PQ$ параллельна $CD$.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .