Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 49]
|
|
Сложность: 3+ Классы: 8,9,10,11
|
В ряд записаны $n > 2$ различных ненулевых чисел, причём каждое следующее больше предыдущего на одну и ту же величину. Обратные к этим $n$ числам тоже удалось записать в ряд (возможно, в другом порядке) так, что каждое следующее больше предыдущего на одну и ту же величину (возможно, иную, чем в первом случае). Чему могло равняться $n$?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
На столе лежат 8 всевозможных горизонтальных полосок $1\times3$ из трёх квадратиков $1\times1$, каждый из которых либо белый, либо серый (см. рисунок).
Разрешается переносить полоски в любых направлениях на любые (не обязательно целые) расстояния, не поворачивая и не переворачивая. Можно ли расположить полоски на столе так, чтобы все белые точки образовали многоугольник, ограниченный замкнутой несамопересекающейся ломаной, и все серые – тоже? (Полоски не должны перекрываться.)
|
|
Сложность: 3+ Классы: 9,10,11
|
Мудрецам $A, B, C, D$ сообщили, что числа 1, 2, ..., 12 написаны по одному на 12 карточках и что эти карточки будут розданы им по три, причём каждый увидит лишь свои карточки. После раздачи мудрецы по очереди сказали следующее.
$A$: "На одной из моих карточек – число 8".
$B$: "Все числа на моих карточках простые".
$C$: "А все числа на моих – составные, причём имеют общий простой делитель".
$D$: "Тогда я знаю, какие карточки у каждого из вас".
Какие карточки у $A$, если все сказали правду?
|
|
Сложность: 3+ Классы: 9,10,11
|
В одной из клеток шахматной доски 10×10 стоит ладья. Переходя каждым
ходом в соседнюю по стороне клетку, она обошла все клетки доски, побывав в каждой ровно по одному разу. Докажите, что для каждой главной диагонали доски верно следующее утверждение: в маршруте ладьи есть два последовательных хода, первым из которых она ушла с этой диагонали, а следующим – вернулась на неё. (Главная диагональ ведёт из угла доски в противоположный угол.)
|
|
Сложность: 3+ Классы: 8,9,10
|
Два человека шли по прямой дорожке навстречу друг другу с постоянными скоростями, но один – медленно, другой – быстро. Одновременно каждый отпустил вперёд от себя собаку (собаки бежали с одной и той же постоянной скоростью). Каждая собака добежала до другого хозяина и возвратилась к своему. Чья собака вернулась раньше – быстрого хозяина или медленного?
Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 49]