Страница: 1
2 >> [Всего задач: 8]
|
|
Сложность: 3 Классы: 8,9,10,11
|
В остроугольном треугольнике $ABC$ $H$ – ортоцентр; $A_1$, $B_1$, $C_1$ – точки касания вписанной окружности с $BC$, $CA$, $AB$ соответственно; $E_A$, $E_B$, $E_C$ – середины $AH$, $BH$, $CH$ соответственно; окружность с центром $E_A$, проходящая через $A$, повторно пересекает биссектрису угла $A$ в точке $A_2$; точки $B_2$, $C_2$ определены аналогично. Докажите, что треугольники $A_1B_1C_1$ и $A_2B_2C_2$ подобны.
|
|
Сложность: 4- Классы: 8,9,10,11
|
В равнобедренном треугольнике $ABC$ ($AC=BC$) $O$ – центр описанной окружности, $H$ – ортоцентр, $P$ – такая точка внутри треугольника, что $\angle APH=\angle BPO=\pi/2$. Докажите, что $\angle PAC=\angle PBA=\angle PCB$.
|
|
Сложность: 4 Классы: 9,10,11
|
Даны 4 точки на плоскости $A$, $B$, $C$, $D$, не образующие прямоугольник. Пусть стороны треугольника $T$ равны $AB+CD$, $AC+BD$, $AD+BC$. Докажите, что $T$ – остроугольный.
|
|
Сложность: 4+ Классы: 9,10,11
|
Пусть $(P,P')$ и $(Q,Q')$ – две пары точек, изогонально сопряженных относительно треугольника $ABC$, $R$ – точка пересечения прямых $PQ$ и $P'Q'$. Докажите, что педальные окружности точек $P$, $Q$ и $R$ соосны.
|
|
Сложность: 4+ Классы: 8,9,10,11
|
Для каких $n>0$ можно отметить на плоскости несколько различных точек и несколько различных окружностей так, чтобы были выполнены следующие условия:
- через каждую отмеченную точку проходит ровно $n$ отмеченных окружностей;
- на каждой отмеченной окружности лежит ровно $n$ отмеченных точек;
- у каждой отмеченной окружности отмечен еe центр?
Страница: 1
2 >> [Всего задач: 8]