ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Куб, состоящий из $(2n)^3$ единичных кубиков, проткнут несколькими спицами, параллельными рёбрам куба. Каждая спица протыкает ровно 2$n$ кубиков, каждый кубик проткнут хотя бы одной спицей.
  а) Докажите, что можно выбрать такие $2n^2$ спиц, идущих в совокупности всего в одном или двух направлениях, что никакие две из этих спиц не протыкают один и тот же кубик.
  б) Какое наибольшее количество спиц можно гарантированно выбрать из имеющихся так, чтобы никакие две выбранные спицы не протыкали один и тот же кубик?

Вниз   Решение


На сторонах некоторого многоугольника расставлены стрелки.
Докажите, что число вершин, в которые входят две стрелки, равно числу вершин, из которых выходят две стрелки.

ВверхВниз   Решение


Дан треугольник ABC. Точки M1, M2, M3 – середины сторон AB, BC и AC, a точки H1, H2, H3 – основания высот, лежащие на тех же сторонах.
Докажите, что из отрезков H1M2, H2M3 и H3M1 можно построить треугольник.

ВверхВниз   Решение


Высота треугольной пирамиды проходит через точку пересечения высот треугольника основания. Докажите, что противоположные рёбра пирамиды попарно перпендикулярны.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



Задача 57385

Тема:   [ Многоугольники (неравенства) ]
Сложность: 5
Классы: 9

Семиугольник  A1...A7 вписан в окружность. Докажите, что если центр этой окружности лежит внутри его, то сумма углов при вершинах  A1, A3, A5 меньше  450o.
Прислать комментарий     Решение


Задача 57388

Тема:   [ Многоугольники (неравенства) ]
Сложность: 5
Классы: 9

Плоский многоугольник A1A2...An составлен из n твёрдых стержней, соединенных шарнирами. Докажите, что если n > 4, то его можно деформировать в треугольник.
Прислать комментарий     Решение


Задача 57389

Тема:   [ Многоугольники (неравенства) ]
Сложность: 5
Классы: 9

Внутри выпуклого многоугольника  A1...An взята точка O. Пусть $ \alpha_{k}^{}$ — величина угла при вершине  Ak, xk = OAk, dk — расстояние от точки O до прямой  AkAk + 1. Докажите, что  $ \sum$xksin($ \alpha_{k}^{}$/2) $ \geq$ $ \sum$dk и  $ \sum$xkcos($ \alpha_{k}^{}$/2) $ \geq$ p, где p — полупериметр многоугольника.
Прислать комментарий     Решение


Задача 57390

Тема:   [ Многоугольники (неравенства) ]
Сложность: 5
Классы: 9

Правильный 2n-угольник M1 со стороной a лежит внутри правильного 2n-угольника M2 со стороной 2a. Докажите, что многоугольник M1 содержит центр многоугольника M2.
Прислать комментарий     Решение


Задача 57391

Тема:   [ Многоугольники (неравенства) ]
Сложность: 5
Классы: 9

Внутри правильного многоугольника  A1...An взята точка O. Докажите, что по крайней мере один из углов AiOAj удовлетворяет неравенствам  $ \pi$(1 - 1/n) $ \leq$ $ \angle$AiOAj $ \leq$ $ \pi$.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .