ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

На плоскости даны 2005 точек (никакие три из которых не лежат на одной прямой). Каждые две точки соединены отрезком. Тигр и Осёл играют в следующую игру. Осёл помечает каждый отрезок одной из цифр, а затем Тигр помечает каждую точку одной из цифр. Осёл выигрывает, если найдутся две точки, помеченные той же цифрой, что и соединяющий их отрезок, и проигрывает в противном случае. Доказать, что при правильной игре Осёл выиграет.

Вниз   Решение


На стороне BC треугольника ABC взята точка D. Окружность S1 касается отрезков BE и EA и описанной окружности, окружность S2 касается отрезков CE и EA и описанной окружности. Пусть I, I1, I2 и r, r1, r2 -- центры и радиусы вписанной окружности и окружностей S1, S2; $ \varphi$ = $ \angle$ADB. Докажите, что точка I лежит на отрезке I1I2, причём I1I : II2 = tg2$ {\frac{\varphi }{2}}$. Докажите также, что r = r1cos2$ {\frac{\varphi }{2}}$ + r2sin2$ {\frac{\varphi }{2}}$ (Тебо).

ВверхВниз   Решение


В сегмент вписываются всевозможные пары пересекающихся окружностей, и для каждой пары через точки их пересечения проводится прямая. Докажите, что все эти прямые проходят через одну точку (см. задачу 3.44).

ВверхВниз   Решение


Вероятность того, что купленная лампочка будет работать, равна 0,95.
Сколько нужно купить лампочек, чтобы с вероятностью 0,99 среди них было не менее пяти работающих?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 366]      



Задача 30649

Тема:   [ Уравнения в целых числах ]
Сложность: 2+
Классы: 7,8,9

Найдите все целые решения уравнения  3x – 12y = 7.

Прислать комментарий     Решение

Задача 31281

Темы:   [ Уравнения в целых числах ]
[ НОД и НОК. Взаимная простота ]
Сложность: 2+
Классы: 6,7,8

Доказать, что число  2 + 4 + 6 + ... + 2n  не может быть  a) квадратом;  б) кубом целого числа.

Прислать комментарий     Решение

Задача 31286

Темы:   [ Уравнения в целых числах ]
[ Признаки делимости на 3 и 9 ]
Сложность: 2+
Классы: 6,7,8

Доказать, что произведение шести последовательных натуральных чисел не может быть равно 776965920.

Прислать комментарий     Решение

Задача 31288

Темы:   [ Уравнения в целых числах ]
[ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 6,7,8

Доказать, что уравнение  4k – 4l = 10n  не имеет решений в целых числах.

Прислать комментарий     Решение

Задача 32782

Тема:   [ Уравнения в целых числах ]
Сложность: 2+
Классы: 7,8,9

У кассира есть только 72-рублевые купюры, а у вас – только 105-рублевые (у обоих в неограниченном количестве).
  а) Сможете ли вы уплатить кассиру один рубль?
  б) А 3 рубля?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 366]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .