ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи а) Докажите, что проективное преобразование P плоскости, переводящее бесконечно удаленную прямую в бесконечно удаленную прямую, является аффинным. б) Докажите, что если точки A, B, C, D лежат па прямой, параллельной исключительной прямой проективного преобразования P плоскости в) Докажите, что если проективное преобразование P переводит параллельные прямые l1 и l2 в параллельные прямые, то либо P аффинно, либо его исключительная прямая параллельна прямым l1 и l2. г) Пусть P — взаимно однозначное преобразование множества всех конечных и бесконечных точек плоскости, которое каждую прямую переводит в прямую. Докажите, что P проективно. ![]() |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 102]
a1, a2, a3, ..., an, ... – возрастающая последовательность натуральных чисел. Известно, что an+1 ≤ 10an при всех натуральных n.
Последовательность a1, a2, a3, ... натуральных чисел такова, что an+2 = an+1an + 1 при всех n.
Периоды двух последовательностей – 7 и 13. Какова максимальная длина начального куска, который может у них совпадать?
Периоды двух последовательностей – m и n – взаимно простые числа. Какова максимальная длина начального куска, который может у них совпадать?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 102] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |