ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Числа от 1 до 1000000 покрашены в два цвета – чёрный и белый. За ход разрешается выбрать любое число от 1 до 1000000 и перекрасить его и все числа, не взаимно простые с ним, в противоположный цвет. Вначале все числа были чёрными. Можно ли за несколько ходов добиться того, что все числа станут белыми?

Вниз   Решение


Представьте в виде композиции дробно-линейного отображения   w =   и комплексного сопряжения   w = z  инверсию относительно окружности
  а) с центром i и радиусом R = 1;
  б) с центром  Reiφ  и радиусом R;
  в) с центром z0 и радиусом R.

ВверхВниз   Решение


Ребро куба ABCDA1B1C1D1 равно 1. Найдите радиус сферы, касающейся: а) рёбер BA , BB1 , BC и плоскости A1DC1 ; б) рёбер BA , BB1 , BC и прямой DA1 .

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 12]      



Задача 57833

Тема:   [ Центральная симметрия (прочее) ]
Сложность: 2-
Классы: 9

Докажите, что при центральной симметрии окружность переходит в окружность.
Прислать комментарий     Решение


Задача 57835

Тема:   [ Центральная симметрия (прочее) ]
Сложность: 2-
Классы: 9

Противоположные стороны выпуклого шестиугольника попарно равны и параллельны. Докажите, что он имеет центр симметрии.
Прислать комментарий     Решение


Задача 57836

Тема:   [ Центральная симметрия (прочее) ]
Сложность: 2-
Классы: 9

Дан параллелограмм ABCD и точка M. Через точки A, B, C и D проведены прямые, параллельные прямым MC, MD, MA и MB соответственно. Докажите, что они пересекаются в одной точке.
Прислать комментарий     Решение


Задача 55611

Темы:   [ Центральная симметрия (прочее) ]
[ Осевая и скользящая симметрии (прочее) ]
[ Поворот (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9

Существует ли фигура, не имеющая ни осей симметрии, ни центров симметрии, но переходящая в себя при некотором повороте?

Прислать комментарий     Решение

Задача 67219

Темы:   [ Центральная симметрия (прочее) ]
[ Четность и нечетность ]
[ Топология (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

Замкнутая, возможно, самопересекающаяся ломаная симметрична относительно не лежащей на ней точки $O$. Докажите, что число оборотов ломаной вокруг $O$ нечётно. (Числом оборотов вокруг $O$ называется сумма ориентированных углов $$\angle A_1OA_2+\angle A_2OA_3+\ldots+\angle A_{n-1}OA_n+\angle A_nOA_1,$$ делённая на $2\pi$.)
Прислать комментарий     Решение


Страница: 1 2 3 >> [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .