ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Сравните: sin 3 и sin 3°. ![]() ![]() Ширина реки один километр. Это по определению означает, что от любой точки
каждого берега можно доплыть до противоположного берега, проплыв не больше
километра. Может ли катер проплыть по реке так, чтобы в любой момент расстояние до
любого из берегов было бы не больше: ![]() ![]() ![]() На плоскости отмечены четыре точки. Докажите, что их можно разбить на две группы так, что эти группы точек нельзя будет отделить одну от другой никакой прямой. ![]() ![]() |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39]
Входные данные Во входном файле записано количество вершин многоугольника N (3 ≤ N ≤ 20) и координаты точки x и y. Далее перечислены координаты вершин многоугольника в порядке обхода по часовой стрелке. Все координаты – целые числа, не превосходящие по абсолютной величине 105. Выходные данные Если точку P накрыть нельзя, запишите в выходной файл сообщение «Impossible». В противном случае выведите в него последовательность ходов, после выполнения которой многоугольник M накроет точку P. Каждый ход задается номерами вершин той стороны, относительно середины которой производится преобразование центральной симметрии. Вершины многоугольника нумеруются начиная с 1. Пример входного файла 3 3 2 0 1 1 2 1 0 Пример выходного файла 2 3 3 1 2 3
Назовём девятизначное число красивым, если все его цифры различны.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |