ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 2]      



Задача 76242

Темы:   [ Одномерные массивы ]
[ Движения ]
Сложность: 2+

(Из книги Д. Гриса) Дан массив целых чисел x[1]..x[m+n], рассматриваемый как соединение двух его отрезков: начала x[1]..x[m] длины m и конца x[m+1]..x[m+n] длины n. Не используя дополнительных массивов, переставить начало и конец. (Число действий порядка m + n.)
Прислать комментарий     Решение


Задача 102937

 [Шагающий многоугольник ]
Темы:   [ Многоугольники ]
[ Движения ]
Сложность: 4-

На плоскости заданы выпуклый многоугольник M и точка P(x, y). За один ход разрешается центрально-симметрично отразить многоугольник относительно середины любой из его сторон. Требуется найти последовательность ходов, в результате которой точка P оказалась бы накрытой этим многоугольником. 

Входные данные

Во входном файле записано количество вершин многоугольника N (3 ≤ N ≤ 20) и координаты точки x и y. Далее перечислены координаты вершин многоугольника в порядке обхода по часовой стрелке. Все координаты – целые числа, не превосходящие по абсолютной величине 105.

Выходные данные

Если точку P накрыть нельзя, запишите в выходной файл сообщение «Impossible». В противном случае выведите в него последовательность ходов, после выполнения которой многоугольник M накроет точку P. Каждый ход задается номерами вершин той стороны, относительно середины которой производится преобразование центральной симметрии. Вершины многоугольника нумеруются начиная с 1.

Пример входного файла

3 3 2
0 1 1 2 1 0

Пример выходного файла

2 3
3 1
2 3
Прислать комментарий     Решение


Страница: 1 [Всего задач: 2]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .