Страница:
<< 13 14 15 16
17 18 19 >> [Всего задач: 2393]
|
|
Сложность: 3 Классы: 10,11
|
В тетраэдре
ABCD известно, что
AD BC . Докажите, что высоты
тетраэдра, проведённые из вершин
B и
C , пересекаются, причём точка
их пересечения лежит на общем перпендикуляре скрещивающихся прямых
AD и
BC .
|
|
Сложность: 3 Классы: 10,11
|
Основанием пирамиды
SABC является правильный треугольник,
сторона которого равна
2
. Основанием высоты, опущенной из
вершины
S , является точка
O , лежащая внутри треугольника
ABC .
Расстояния от точки
O до сторон
AB ,
BC и
CA находятся в отношении
2
:1
:3
. Площадь грани
SAB равна
. Найдите высоту
пирамиды.
|
|
Сложность: 3 Классы: 10,11
|
Основанием пирамиды
SABC является правильный треугольник,
сторона которого равна 2. Основанием высоты, опущенной из
вершины
S , является точка
O , лежащая внутри треугольника
ABC .
Известно, что синус угла
OAB относится к синусу угла
OAC как
2
:3
,
а синус угла
OCB относится к синусу угла
OCA как
4
:3
. Площадь
грани
SAC равна
. Найдите высоту пирамиды.
|
|
Сложность: 3 Классы: 10,11
|
В кубе
ABCDA1
B1
C1
D1
, где
AA1
,
BB1
,
CC1
и
DD1
– параллельные рёбра, плоскость
P проходит через диагональ
A1
C1
грани куба и середину ребра
DD1
. Найдите расстояние от середины ребра
CD
до плоскости
P , если ребро куба равно 4.
|
|
Сложность: 3 Классы: 10,11
|
В кубе
ABCDA1
B1
C1
D1
, где
AA1
,
BB1
,
CC1
и
DD1
– параллельные рёбра, плоскость
P проходит через диагональ
A1
C1
грани
куба и середину ребра
AD . Найдите расстояние от середины ребра
AB до
плоскости
P , если ребро куба равно 3.
Страница:
<< 13 14 15 16
17 18 19 >> [Всего задач: 2393]