ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 737]      



Задача 60900

Темы:   [ Теория алгоритмов (прочее) ]
[ Троичная система счисления ]
Сложность: 3
Классы: 6,7,8,9

а) У одного человека был подвал, освещавшийся тремя электрическими лампочками. Выключатели этих лампочек находились вне подвала, так что включив любой из выключателей, хозяин должен был спуститься в подвал, чтобы увидеть, какая именно лампочка зажглась. Однажды он придумал способ, как определить для каждого выключателя, какую именно лампочку он включает, сходив в подвал ровно один раз. Какой это способ?
б) Сколько лампочек и выключателей можно идентифицировать друг с другом, если разрешается 2 раза спуститься в подвал?

Прислать комментарий     Решение

Задача 60921

Тема:   [ Взвешивания ]
Сложность: 3
Классы: 6,7,8

4 монеты. Из четырех монет одна фальшивая (она отличается по весу от настоящей, но не известно, в какую сторону). Требуется за два взвешивания на двухчашечных весах без гирь найти фальшивую монету.

Прислать комментарий     Решение

Задача 67315

Темы:   [ Взвешивания ]
[ Показательные функции и логарифмы (прочее) ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Оценка + пример ]
Сложность: 3
Классы: 9,10,11

У математика есть 19 различных гирь, массы которых в килограммах равны $\ln 2$, $\ln 3$, $\ln 4, \ldots, \ln 20$, и абсолютно точные двухчашечные весы. Он положил несколько гирь на весы так, что установилось равновесие. Какое наибольшее число гирь могло оказаться на весах?
Прислать комментарий     Решение


Задача 102841

Тема:   [ Взвешивания ]
Сложность: 3
Классы: 7,8,9

Два взвешивания. Имеется 7 внешне одинаковых монет, среди которых 5 настоящих (все — одинакового веса) и 2 фальшивых (одинакового между собой веса, но легче настоящих). Как с помощью двух взвешиваний на чашечных весах без гирь выделить 3 настоящие монеты?
Прислать комментарий     Решение


Задача 30445

Тема:   [ Симметричная стратегия ]
Сложность: 3+
Классы: 7,8

а) Двое по очереди ставят слонов в клетки шахматной доски. Очередным ходом надо побить хотя бы одну небитую клетку. Слон бьет и клетку, на которой стоит. Проигрывает тот, кто не может сделать ход.

б) Та же игра, но с ладьями.

Прислать комментарий     Решение


Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 737]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .