Страница:
<< 54 55 56 57
58 59 60 >> [Всего задач: 2247]
В некоторый угол вписана окружность радиуса 5. Хорда, соединяющая точки касания, равна 8. К окружности проведены две касательные, параллельные хорде. Найдите стороны полученной трапеции.
В четырёхугольнике ABCD расположены две непересекающиеся окружности так, что одна из них касается сторон AB, BC и CD, а другая – сторон AB, AD и CD. Прямая MN пересекает стороны AB и CD соответственно в точках M и N и касается обеих окружностей. Найдите расстояние между центрами окружностей, если периметр
четырёхугольника MBCN равен 2p, BC = a и разность радиусов окружностей равна r.
Дан ромб со стороной a и острым углом α.
Найдите радиус окружности, проходящей через две соседние вершины ромба и касающейся противоположной стороны ромба или её продолжения.
В окружность радиуса 17 вписан четырёхугольник, диагонали которого взаимно перпендикулярны и находятся на расстоянии 8 и 9 от центра окружности. Найдите стороны четырёхугольника.
В окружность радиуса 10 вписан четырёхугольник, диагонали которого перпендикулярны и равны 12 и 10. Найдите стороны четырёхугольника.
Страница:
<< 54 55 56 57
58 59 60 >> [Всего задач: 2247]