ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Сколькими способами можно выбрать четырёх человек на четыре различные должности, если имеется девять кандидатов на эти должности?

Вниз   Решение


Игральную кость бросают раз за разом. Обозначим через Pn вероятность того, что в какой-то момент сумма очков, выпавших при всех сделанных бросках, равна n. Докажите, что при  n ≥ 7  верно равенство  Pn = ⅙ (Pn–1 + Pn–2 + ... + Pn–6).

Вверх   Решение

Задачи

Страница: << 1 2 3 4 >> [Всего задач: 18]      



Задача 102828

Темы:   [ Симметрические системы. Инволютивные преобразования ]
[ Симметрические многочлены ]
[ Замена переменных ]
Сложность: 3
Классы: 7,8

Решите систему уравнений:
    xy(x + y) = 30
    x³ + y³ = 35.

Прислать комментарий     Решение

Задача 109027

Тема:   [ Симметрические системы. Инволютивные преобразования ]
Сложность: 3
Классы: 8,9,10

Найти все действительные решения системы уравнений
    x² + y² + z² = 1,
    x³ + y³ + z³ = 1.

Прислать комментарий     Решение

Задача 76435

Темы:   [ Симметрические системы. Инволютивные преобразования ]
[ Симметрические многочлены ]
[ Методы решения задач с параметром ]
Сложность: 3+
Классы: 8,9,10

Решить систему уравнений:
   xy = a,
   x
5 + y5 = b5.

Прислать комментарий     Решение

Задача 78036

Тема:   [ Симметрические системы. Инволютивные преобразования ]
Сложность: 3+
Классы: 9,10,11

Найти все действительные решения системы
   x³ + y³ = 1,
   x4 + y4 = 1.

Прислать комментарий     Решение

Задача 61040

Темы:   [ Симметрические системы. Инволютивные преобразования ]
[ Симметрические многочлены ]
[ Теорема Виета ]
Сложность: 4-
Классы: 8,9,10,11

Решите системы:

а)  

б)  x(y + z) = 2,  y(z + x) = 2,  z(x + y) = 3;

в)  x2 + y2 + x + y = 32,  12(x + y) = 7xy;

г)  

д)  x + y + z = 1,  xy + xz + yz = –4,  x3 + y3 + z3 = 1;

е)  x2 + y2 = 12,  x + y + xy = 9.

Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 18]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .