ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что перпендикуляры, опущенные из точек A1, B1, C1 на стороны BC, CA, AB треугольника ABC, пересекаются в одной точке тогда и только тогда, когда A1B² + C1A² + B1C² = B1A² + A1C² + C1B² (теорема Карно). ![]() ![]() Точка $M$ лежит внутри выпуклого четырёхугольника $ABCD$ на одинаковом расстоянии от прямых $AB$ и $CD$ и на одинаковом расстоянии от прямых $BC$ и $AD$.
Оказалось, что площадь четырёхугольника $ABCD$ равна $MA\cdot MC + MB\cdot MD$. Докажите, что четырёхугольник $ABCD$ ![]() ![]() ![]() Биссектрисы углов A и C треугольника ABC пересекают описанную окружность этого треугольника в точках A0 и C0 соответственно. Прямая, проходящая через центр вписанной окружности треугольника ABC параллельно стороне AC , пересекается с прямой A0C0 в точке P . Докажите, что прямая PB касается описанной окружности треугольника ABC . ![]() ![]() |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 33]
а) sin 20osin 40osin 60osin 80o; б) cos 20ocos 40ocos 60ocos 80o.
y = cos nx . sin имеет период 3
tg 20o . tg 40o . tg 80o =
а) f1(x) = a cos x + b sin x; б) f2(x) = a cos2x + b cos x sin x + c sin2x.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 33] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |