ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Внутри квадрата со стороной 1 расположены несколько кругов, сумма радиусов которых равна 0,51. Доказать, что найдется прямая, которая параллельна одной из сторон квадрата и пересекает, по крайней мере, 2 круга.

Вниз   Решение


На плоскости отметили 4n точек, после чего соединили отрезками все пары точек, расстояние между которыми равно 1 см. Оказалось, что среди любых  n + 1  точек обязательно есть две, соединённые отрезком. Докажите, что всего проведено не менее 7n отрезков.

ВверхВниз   Решение


Пусть r — радиус вписанной окружности, а ra , rb и rc — радиусы вневписанных окружностей треугольника ABC , касающихся сторон BC=a , AC=b , AB=c соответственно; p — полупериметр треугольника ABC , S — его площадь. Докажите, что
                     а) = + + ; б) S = .

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 66]      



Задача 54509

Темы:   [ Метод ГМТ ]
[ Биссектриса угла (ГМТ) ]
[ Вписанная, описанная и вневписанная окружности; их радиусы ]
Сложность: 3+
Классы: 8,9

С помощью циркуля и линейки постройте точку, равноудаленную от трёх данных прямых.

Прислать комментарий     Решение


Задача 115496

Темы:   [ Средняя линия треугольника ]
[ Биссектриса угла (ГМТ) ]
[ Свойства биссектрис, конкуррентность ]
[ Описанные четырехугольники ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC точка I  — центр вписанной окружности. Точки M и N  — середины сторон BC и AC соответственно. Известно, что угол AIN прямой. Докажите, что угол  BIM  — также прямой.
Прислать комментарий     Решение


Задача 55703

Темы:   [ Параллельный перенос (прочее) ]
[ Биссектриса угла (ГМТ) ]
Сложность: 4-
Классы: 8,9

Найдите геометрическое место точек, разность расстояний от которых до двух данных непараллельных прямых имеет данную величину.

Прислать комментарий     Решение

Задача 65081

Темы:   [ Четырехугольник: вычисления, метрические соотношения. ]
[ Биссектриса угла (ГМТ) ]
[ Симметрия помогает решить задачу ]
[ Вписанный угол, опирающийся на диаметр ]
[ Признаки подобия ]
Сложность: 4-
Классы: 8,9

В выпуклом четырёхугольнике ABCD углы B и D равны,  CD = 4BC,  а биссектриса угла A проходит через середину стороны CD.
Чему может быть равно отношение  AD : AB?

Прислать комментарий     Решение

Задача 66747

Темы:   [ Биссектриса делит дугу пополам ]
[ Биссектриса угла (ГМТ) ]
Сложность: 4-
Классы: 8,9,10,11

К плоскости приклеены два непересекающихся деревянных круга одинакового размера – серый и чёрный. Дан деревянный треугольник, одна сторона которого серая, а другая – чёрная. Его передвигают так, чтобы круги были снаружи треугольника, причём серая сторона касалась серого круга, а чёрная – чёрного (касание происходит не в вершинах). Докажите, что прямая, содержащая биссектрису угла между серой и чёрной сторонами, всегда проходит через одну и ту же точку плоскости.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 66]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .