Страница: 1 [Всего задач: 5]
|
|
Сложность: 4 Классы: 8,9,10,11
|
Андрей Михайлович выписал на доску все возможные последовательности длины $2022$, состоящие из 1011 нулей и 1011 единиц. Назовём две последовательности
совместимыми, если они совпадают ровно в 4 позициях. Докажите, что Андрей Михайлович может разбить все последовательности на 20 групп так, чтобы никакие две совместимые последовательности не попали в одну группу.
|
|
Сложность: 4+ Классы: 8,9,10
|
В стране лингвистов существует n языков. Там живет m людей, каждый из которых знает ровно три языка, причём для разных людей эти наборы различны. Известно, что максимальное число людей, любые два из которых могут поговорить без посредников, равно k. Оказалось, что 11n ≤ k ≤ m/2.
Докажите, что тогда в стране найдутся хотя бы mn пар людей, которые не смогут поговорить без посредников.
|
|
Сложность: 5 Классы: 8,9,10,11
|
На олимпиаду пришло 2018 участников, некоторые
из них знакомы между собой. Будем говорить, что несколько попарно знакомых участников образуют "кружок", если любой другой участник олимпиады не знаком с кем-то
из них. Докажите, что можно рассадить всех участников
олимпиады по 90 аудиториям так, что ни в какой аудитории не будут сидеть все представители какого-либо "кружка".
|
|
Сложность: 5+ Классы: 9,10,11
|
На плоскости отметили 4n точек, после чего соединили отрезками все пары точек, расстояние между которыми равно 1 см. Оказалось, что среди любых n + 1 точек обязательно есть две, соединённые отрезком. Докажите, что всего проведено не менее 7n отрезков.
Рассмотрим граф, у которого вершины соответствуют всевозможным трёхэлементным подмножествам множества {1, 2, 3, ..., 2k},
а рёбра проводятся между вершинами, которые соответствуют подмножествам, пересекающимся ровно по одному элементу. Найдите минимальное количество цветов, в которые можно раскрасить вершины графа так, чтобы любые две вершины, соединённые ребром, были разного цвета.
Страница: 1 [Всего задач: 5]