Страница:
<< 97 98 99 100
101 102 103 >> [Всего задач: 598]
Дана арифметическая прогрессия (с разностью, отличной от нуля), составленная из натуральных чисел, десятичная запись которых не содержит цифры 9.
а) Докажите, что число её членов меньше 100.
б) Приведите пример такой прогрессии с 72 членами.
в) Докажите, что число членов всякой такой прогрессии не больше 72.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Существует ли такое шестизначное число A, что среди чисел A, 2A, ..., 500000A нет ни одного числа, оканчивающегося шестью одинаковыми цифрами?
|
|
Сложность: 4 Классы: 9,10,11
|
Все члены бесконечной арифметической прогрессии – натуральные числа. В каждом члене удалось подчеркнуть одну или несколько подряд идущих цифр так, что в первом члене оказалась подчёркнута цифра 1, во втором – 2,..., в 23-м – цифры 2 и 3 подряд, и так далее (для любого натурального n в n-м члене подчёркнутые цифры образовали число n). Докажите, что разность прогрессии – степень числа 10.
|
|
Сложность: 4 Классы: 8,9,10
|
Существует ли натуральное число, делящееся на 1998, сумма цифр которого
меньше 27?
|
|
Сложность: 4 Классы: 8,9,10
|
Докажите, что из произвольного множества трёхзначных чисел, включающего не менее четырёх чисел, взаимно простых в совокупности, можно выбрать четыре числа, также взаимно простых в совокупности.
Страница:
<< 97 98 99 100
101 102 103 >> [Всего задач: 598]