Страница:
<< 130 131 132 133
134 135 136 >> [Всего задач: 694]
|
|
Сложность: 4 Классы: 9,10,11
|
На сушке в случайном порядке (как достали из стиральной машины) висит n
носков. Среди них – два любимых носка Рассеянного Учёного. Носки загорожены сохнущей простыней, поэтому Учёный их не видит, и достаёт по одному носку на ощупь. Найдите математическое ожидание числа носков, снятых Учёным к моменту, когда у него окажутся оба любимых носка.
|
|
Сложность: 4 Классы: 10,11
|
На сколько частей могут разделить пространство n плоскостей?
(Каждые три плоскости пересекаются в одной точке, никакие четыре плоскости не имеют общей точки.)
|
|
Сложность: 4 Классы: 10,11
|
Доказать, что существует такое натуральное число n, большее 1000, что сумма цифр числа 2n больше суммы цифр числа 2n+1.
|
|
Сложность: 4 Классы: 7,8,9
|
Боря задумал целое число, большее 100. Кира называет целое число, большее 1. Если Борино число делится на это число, Кира выиграла, иначе Боря вычитает из своего числа названное, и Кира называет следующее число. Ей запрещается повторять числа, названные ранее. Если Борино число станет отрицательным – Кира проигрывает. Есть ли у неё выигрышная стратегия?
|
|
Сложность: 4 Классы: 8,9,10
|
Найдите x1000, если x1 = 4, x2 = 6, и при любом натуральном n ≥ 3 xn – наименьшее составное число, большее
2xn–1 – xn–2.
Страница:
<< 130 131 132 133
134 135 136 >> [Всего задач: 694]