Страница:
<< 92 93 94 95
96 97 98 >> [Всего задач: 492]
Докажите, что внутри остроугольного треугольника существует такая точка, что
основания перпендикуляров, опущенных из неё на стороны, являются вершинами
равностороннего треугольника.
В плоскости выпуклого четырёхугольника ABCD расположена точка P.
Проведены биссектрисы PK,PL, PM и PN треугольников APB, BPC, CPD и DPA соответственно.
а) Найдите хотя бы одну такую точку P, для которой четырёхугольник
KLMN – параллелограмм.
б) Найдите все такие точки.
В треугольнике ABC ∠A = 60°. Внутри треугольника нашлась точка O, из которой все стороны видны под углом 120°. На луче CO выбрана такая точка D, что треугольник AOD – равносторонний. Серединный перпендикуляр к отрезку AO пересекает прямую BC в точке Q. Докажите, что прямая OQ делит отрезок BD пополам.
Внутри остроугольного треугольника ABC постройте (с помощью циркуля и линейки) такую точку K, что ∠KBA = 2∠KAB и ∠KBC = 2∠KCB.
В треугольнике
ABC проведены биссектрисы
AD ,
BE
и
CF , пересекающиеся в точке
I . Серединный перпендикуляр к отрезку
AD пересекает прямые
BE и
CF в
точках
M и
N соответственно. Докажите, что точки
A ,
I ,
M
и
N лежат на одной окружности.
Страница:
<< 92 93 94 95
96 97 98 >> [Всего задач: 492]