Страница:
<< 1 2 3 4 5 6 [Всего задач: 30]
В выпуклом четырёхугольнике ABCD противоположные углы A и C
прямые. На диагональ AC опущены перпендикуляры BE и DF. Докажите,
что CE = FA.
В треугольнике
ABC известно, что
AA1
– медиана,
AA2
– биссектриса,
K – такая точка на
AA1
,
для которой
KA2
|| AC . Докажите, что
AA2
KC .
|
|
Сложность: 5- Классы: 9,10,11
|
Дан четырёхугольник
ABCD , в котором
AB=AD и
ABC= ADC=90
o . На сторонах
BC
и
CD выбраны соответственно точки
F и
E так, что
DF AE . Докажите, что
AF BE .
|
|
Сложность: 5- Классы: 9,10,11
|
На плоскости даны
n>1
точек. Двое по очереди
соединяют еще не соединенную пару точек вектором одного из двух возможных
направлений. Если после очередного хода какого-то игрока сумма всех
нарисованных векторов нулевая, то выигрывает второй; если же очередной ход невозможен,
а нулевой суммы не было, то выигрывает первый. Кто выигрывает при правильной игре?
|
|
Сложность: 5+ Классы: 8,9,10,11
|
В клетчатом прямоугольнике 49×69 отмечены все
50
· 70
вершин клеток. Двое играют в следующую игру:
каждым своим ходом каждый игрок соединяет две точки отрезком,
при этом одна точка не может являться концом двух проведенных отрезков.
Отрезки могут содержать общие точки.
Отрезки проводятся до тех пор, пока точки не кончатся.
Если после этого первый может выбрать на всех проведенных отрезках направления
так, что сумма всех полученных векторов равна нулевому вектору, то он выигрывает, иначе выигрывает
второй. Кто выигрывает при правильной игре?
Страница:
<< 1 2 3 4 5 6 [Всего задач: 30]