Страница:
<< 1 2 3 4 5 6 7 [Всего задач: 33]
|
|
Сложность: 5+ Классы: 10,11
|
Докажите, что в пространстве существует такое расположение 2001 выпуклого многогранника, что никакие три из многогранников не имеют общих точек, а каждые два касаются друг друга (то есть имеют хотя бы одну граничную точку, но не имеют общих внутренних точек).
|
|
Сложность: 4- Классы: 10,11
|
Через середину ребра AC правильной треугольной пирамиды SABC (S – вершина) проведены плоскости α и β, каждая из которых образует угол 30° с плоскостью ABC. Найдите площади сечений пирамиды SABC плоскостями α и β, если эти сечения имеют общую сторону
длины 1, лежащую в грани ABC, а плоскость α перпендикулярна
ребру SA.
|
|
Сложность: 10- Классы: 9,10,11
|
Какое наибольшее число точек можно разместить
a) на плоскости;
б)* в пространстве так, чтобы ни один из треугольников с вершинами в этих точках не был тупоугольным?
(Разумеется, в условии подразумевается, что никакие три точки не должны лежать
на одной прямой – без этого ограничения можно разместить сколько угодно
точек.)
Страница:
<< 1 2 3 4 5 6 7 [Всего задач: 33]