ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

а) Докажите, что    где a0, ..., an – рациональные числа.

б) Найдите эти представления в явном виде для  n = 2, 3, 4, 5.

в) Выразите sinnx при чётном n в виде    а при нечётном – в виде  

Вниз   Решение


На продолжении стороны AC (за точку A) остроугольного треугольника ABC отмечена точка D, а на продолжении стороны BC (за точку C) отмечена точка E, причём  AD = CE.  Известно, что  2∠A = ∠C. Докажите, что ∠CDE < ½ (∠ABD + ∠A).

ВверхВниз   Решение


Четырехугольник ABCD вписан в окружность с центром O . Точки C' , D' симметричны ортоцентрам треугольников ABD и ABC относительно O . Докажите, что если прямые BD и BD' симметричны относительно биссектрисы угла B , то прямые AC и AC' симметричны относительно биссектрисы угла A .

Вверх   Решение

Задачи

Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 501]      



Задача 111444

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Площадь треугольника. ]
Сложность: 4
Классы: 8,9

На сторонах прямоугольного треугольника с катетами a и b построены квадраты, лежащие вне треугольника. Найдите площадь треугольника с вершинами в центрах квадратов.
Прислать комментарий     Решение


Задача 115672

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 4
Классы: 8,9

На сторонах BC и CD квадрата ABCD взяты точки K и H соответственно, причём KC=2KB и HC=HD . Докажите равенство углов AKB и AKH .
Прислать комментарий     Решение


Задача 115737

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Вспомогательные равные треугольники ]
Сложность: 4
Классы: 8,9,11

Вокруг выпуклого четырёхугольника ABCD описаны три прямоугольника. Известно, что два из этих прямоугольников являются квадратами. Верно ли, что и третий обязательно является квадратом? (Прямоугольник описан около четырёхугольника ABCD, если на каждой стороне прямоугольника лежит по одной вершине четырёхугольника.)

Прислать комментарий     Решение

Задача 53065

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Признаки и свойства касательной ]
Сложность: 4
Классы: 8,9

На сторонах AB и AD квадрата ABCD взяты точки K и M так, что 3AK = 4AM = AB. Докажите, что прямая KM касается окружности, вписанной в квадрат.

Прислать комментарий     Решение


Задача 53359

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4
Классы: 8,9

Внутри квадрата ABCD взята точка M, причём $ \angle$MAB = 60o, $ \angle$MCD = 15o. Найдите $ \angle$MBC.

Прислать комментарий     Решение


Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .