Страница:
<< 80 81 82 83
84 85 86 >> [Всего задач: 12601]
|
|
Сложность: 3 Классы: 7,8,9
|
В плоскости отмечена 101 точка, не все они лежат на одной прямой. Через каждую пару отмеченных точек красным карандашом проводится прямая. Докажите, что на плоскости существует точка, через которую проходит не меньше 11 красных прямых.
|
|
Сложность: 3 Классы: 7,8,9
|
В Москве живет 2000 скалолазов, в Санкт-Петербурге и Красноярске по 500, в Екатеринбурге 200, а остальные 100 рассеяны по территории России. Где нужно устроить чемпионат России по скалолазанию, чтобы транспортные расходы участников были минимальны?
|
|
Сложность: 3 Классы: 10,11
|
Через каждую вершину тетраэдра проведена плоскость, содержащая
центр окружности, описанной около противоположной грани, и
перпендикулярная противоположной грани. Докажите, что эти 4
плоскости пересекаются в одной точке.
|
|
Сложность: 3 Классы: 7,8,9
|
Можно ли из 18 доминошек 1×2 выложить квадрат 6×6 так, чтобы при этом не получалось ни одного прямого "шва", соединяющего противоположные стороны квадрата и идущего по краям плиток?
|
|
Сложность: 3 Классы: 8,9,10
|
На плоскости дано n>4 точек. Известно, что любые 4 из них
являются вершинами выпуклого четырехугольника.
Докажите, что
эти n точек являются вершинами выпуклого n-угольника.
Страница:
<< 80 81 82 83
84 85 86 >> [Всего задач: 12601]