ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 93 94 95 96 97 98 99 >> [Всего задач: 606]      



Задача 35300

Темы:   [ Уравнения в целых числах ]
[ Четность и нечетность ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 8,9,10

Доказать, что уравнение  m² + n² = 1980  не имеет решений в целых числах.

Прислать комментарий     Решение

Задача 35302

Темы:   [ Уравнения в целых числах ]
[ Четность и нечетность ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 9,10

Доказать, что уравнение  19x² – 76y² = 1976  не имеет решений в целых числах.

Прислать комментарий     Решение

Задача 60660

Темы:   [ Делимость чисел. Общие свойства ]
[ Разбиения на пары и группы; биекции ]
[ Арифметика остатков (прочее) ]
[ Разложение на множители ]
Сложность: 3
Классы: 7,8,9

Докажите, что число  11999 + 21999 + ... + 161999  делится на 17.

Прислать комментарий     Решение

Задача 64995

Темы:   [ Числовые таблицы и их свойства ]
[ Доказательство от противного ]
[ Арифметика остатков (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8,9

В клетках таблицы 3×3 расставили цифры от 1 до 9. Затем нашли суммы цифр в каждой строке.
Какое наибольшее количество из этих сумм может оказаться полным квадратом?

Прислать комментарий     Решение

Задача 78214

Темы:   [ Обыкновенные дроби ]
[ Индукция (прочее) ]
[ Деление с остатком ]
Сложность: 3
Классы: 8,9,10

Доказать, что любая правильная дробь может быть представлена в виде (конечной) суммы обратных величин попарно различных целых чисел.

Прислать комментарий     Решение

Страница: << 93 94 95 96 97 98 99 >> [Всего задач: 606]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .