Страница:
<< 90 91 92 93
94 95 96 >> [Всего задач: 606]
|
|
Сложность: 5 Классы: 9,10,11
|
а) Пусть q – натуральное число и функция
f(x) = cqx + anxn + ... + a1x + a0 принимает целые значения при x = 0, 1, 2, ..., n + 1.
Докажите, что при любом натуральном x число f(x) также будет целым.
б) Пусть выполняются условия пункта а) и f(x) делится на некоторое целое m ≥ 1 при x = 0, 1, 2, ..., n + 1. Докажите, что f(x) делится на m при всех натуральных x.
|
|
Сложность: 5 Классы: 9,10,11
|
Пусть $p$ и $q$ – взаимно простые натуральные числа. Лягушка прыгает по числовой прямой, начиная в точке $0$, каждый раз либо на $p$ вправо, либо на $q$ влево. Однажды лягушка вернулась в $0$. Докажите, что для любого натурального $d < p + q$ найдутся два числа, посещенные лягушкой и отличающиеся на $d$.
|
|
Сложность: 5 Классы: 8,9,10,11
|
Петя прибавил к натуральному числу N натуральное число M и заметил, что сумма цифр у результата та же, что и у N. Тогда он снова прибавил M к результату, потом – ещё раз, и т. д. Обязательно ли он когда-нибудь снова получит число с той же суммой цифр, что и у N?
|
|
Сложность: 5 Классы: 8,9,10,11
|
Пусть X – некоторое множество целых чисел, которое можно разбить на
N непересекающихся возрастающих арифметических прогрессий (бесконечных в обе стороны), а меньше чем на N – нельзя. Для любого ли такого X такое разбиение на
N прогрессий единственно, если а) N = 2; б) N = 3?
(Возрастающая арифметическая прогрессия – это последовательность, в которой каждое число больше своего соседа слева на одну и ту же положительную величину.)
|
|
Сложность: 5 Классы: 8,9,10
|
На окружности имеются синие и красные точки. Разрешается добавить красную точку и поменять цвета её соседей, а также убрать красную точку и изменить цвета её бывших соседей. Пусть первоначально было всего две красные точки (менее двух точек оставлять не разрешается). Доказать, что за несколько разрешённых операций нельзя получить картину, состоящую из двух синих точек.
Страница:
<< 90 91 92 93
94 95 96 >> [Всего задач: 606]