Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 769]
В равнобедренном треугольнике MPK с основанием PM ∠P = arctg 5/12. Окружность, вписанная в угол K, касается стороны KP в точке A и отсекает от основания отрезок HE. Известно, что центр окружности удалён от вершины K на расстояние 13/24 и AP = 6/5. Найдите площадь треугольника HAE.
На плоскости даны две окружности радиусов 4 и 3 с центрами в
точках
O1
и
O2
, касающиеся некоторой прямой в точках
M1
и
M2
и лежащие по разные стороны от этой прямой.
Отношение отрезка
O1
O2
к отрезку
M1
M2
равно
. Найдите
O1
O2
.
Окружность проходит через соседние вершины M и N прямоугольника MNPQ. Длина касательной, проведённой из точки Q к окружности, равна 1, PQ = 2. Найдите все возможные значения, которые может принимать площадь прямоугольника MNPQ, если диаметр окружности равен .
Из конца A диаметра AC окружности опущен перпендикуляр AP на касательную, проведённую через лежащую на окружности точку B, отличную от A и C. Докажите, что AB – биссектриса угла PAC.
Две прямые касаются окружности с центром O в точках A и B и пересекаются в точке C. Найдите угол между этими прямыми, если ∠ABO = 40°.
Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 769]