ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 769]      



Задача 76505

Тема:   [ Общая касательная к двум окружностям ]
Сложность: 3
Классы: 8,9

К двум окружностям, касающимся извне, проведены общие внешние касательные и точки касания соединены между собой. Доказать, что в полученном четырёхугольнике суммы противоположных сторон равны.
Прислать комментарий     Решение


Задача 78512

Тема:   [ Признаки и свойства касательной ]
Сложность: 3
Классы: 7,8

На данной окружности выбраны диаметрально противоположные точки A и B и третья точка C. Касательная, проведённая к окружности в точке A, и прямая BC пересекаются в точке M. Доказать, что касательная, проведённая к окружности в точке C, делит пополам отрезок AM.
Прислать комментарий     Решение


Задача 111465

Темы:   [ Признаки и свойства касательной ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Диаметр, основные свойства ]
Сложность: 3
Классы: 8,9

Окружность радиуса R касается смежных сторон AB и AD квадрата ABCD , пересекает сторону BC в точке E и проходит через точку C . Найдите BE .
Прислать комментарий     Решение


Задача 111478

Темы:   [ Две касательные, проведенные из одной точки ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

В треугольник ABC вписана окружность, касающаяся стороны AB в точке D и стороны BC в точке E . Найдите углы треугольника, если = и = .
Прислать комментарий     Решение


Задача 111507

Темы:   [ Общая касательная к двум окружностям ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

Длина внешней касательной окружностей радиусов r и R в два раза больше длины внутренней касательной. Найдите расстояние между центрами этих окружностей.
Прислать комментарий     Решение


Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 769]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .