Страница:
<< 10 11 12 13 14
15 16 >> [Всего задач: 78]
|
|
Сложность: 5- Классы: 9,10,11
|
Найдите множество точек касания пар окружностей,
касающихся сторон данного угла в данных точках
A и
B.
Прямые, содержащие медианы треугольника ABC, вторично пересекают его описанную окружность в точках A1, B1, C1. Прямые, проходящие через A, B, C и параллельные противоположным сторонам, пересекают ее же в точках A2, B2, C2. Докажите, что прямые A1A2, B1B2, C1C2 пересекаются в одной точке.
Докажите, что среди всех треугольников
ABC с фиксированным углом
и полупериметром
p наибольшую площадь имеет равнобедренный
треугольник с основанием
BC.
В угол вписаны касающиеся внешним образом окружности радиусов r и R (r < R). Первая из них касается сторон угла в точках A и B. Найдите AB.
В треугольник ABC вписана окружность радиуса R, касающаяся стороны AC в точке D, стороны AB в точке E и стороны BC в точке F. Известно, что AD = R,
DC = a. Найдите площадь треугольника BEF.
Страница:
<< 10 11 12 13 14
15 16 >> [Всего задач: 78]