Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 245]
В равнобедренном треугольнике ABC сторона AC = b, стороны BA = BC = a, AM и CN – биссектрисы углов A и C. Найдите MN.
В треугольнике ABC сторона AB = 15 и AC = 10, AD – биссектриса угла A. Из точки D проведена прямая, параллельная AB, до пересечения с AC в точке E. Найдите AE, EC и DE.
ABC – данный треугольник; CD – биссектриса угла C; точка E лежит на стороне BC, причём DE || AC. Найдите DE, если BC = a, AC = b.
В прямоугольном треугольнике биссектриса острого угла делит катет на отрезки m и n (m > n). Найдите другой катет и гипотенузу.
В равнобедренном треугольнике ABC боковая сторона AB равна 10, основание AC равно 12. Биссектрисы углов A и C пересекаются в точке D. Найдите BD.
Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 245]