ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 139]      



Задача 115869

Темы:   [ Построение треугольников по различным точкам ]
[ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Окружность Аполлония ]
Сложность: 4-
Классы: 8,9,10,11

В треугольнике ABC отметили центр вписанной окружности, основание высоты, опущенной на сторону AB, и центр вневписанной окружности, касающейся этой стороны и продолжений двух других. После этого сам треугольник стёрли. Восстановите его.

Прислать комментарий     Решение

Задача 54631

Темы:   [ Две касательные, проведенные из одной точки ]
[ Периметр треугольника ]
[ Вневписанные окружности ]
Сложность: 4-
Классы: 8,9

С помощью циркуля и линейки проведите через вершину треугольника прямую, делящую периметр треугольника пополам.

Прислать комментарий     Решение

Задача 55457

Темы:   [ Треугольник (экстремальные свойства) ]
[ Построения (прочее) ]
[ Вневписанные окружности ]
[ Окружность, вписанная в угол ]
Сложность: 4-
Классы: 8,9,10

С помощью циркуля и линейки проведите через данную точку прямую, отсекающую от данного угла треугольник наименьшего возможного периметра.

Прислать комментарий     Решение

Задача 76436

Темы:   [ Треугольник (построения) ]
[ Периметр треугольника ]
[ Вневписанные окружности ]
[ Две касательные, проведенные из одной точки ]
Сложность: 4-
Классы: 9

На плоскости дан угол, образованный двумя лучами a и b, и некоторая точка M.
Провести через точку M прямую c так, чтобы треугольник, образованный прямыми a, b и c, имел периметр данной величины.

Прислать комментарий     Решение

Задача 108493

Темы:   [ Окружность, вписанная в угол ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Вневписанные окружности ]
[ Признаки и свойства касательной ]
Сложность: 4-
Классы: 8,9

Окружность с центром в точке M касается сторон угла AOB в точках A и B. Вторая окружность с центром в точке N касается отрезка OA, луча BA и продолжения стороны угла OB за точку O. Известно, что ON : OM = 12 : 13. Найдите отношение радиусов окружностей.

Прислать комментарий     Решение


Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 139]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .