ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 90 91 92 93 94 95 96 >> [Всего задач: 512]      



Задача 111348

Темы:   [ Углы между биссектрисами ]
[ Четыре точки, лежащие на одной окружности ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9,10,11

Через центр O вписанной в треугольник ABC окружности проведена прямая, перпендикулярная прямой AO и пересекающая прямую BC в точке M.
Из точки O на прямую AM опущен перпендикуляр OD. Докажите, что точки A, B, C и D лежат на одной окружности.

Прислать комментарий     Решение

Задача 116622

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 9,10,11

Автор: Фольклор

Внутри прямоугольного треугольника АВС выбрана произвольная точка Р, из которой опущены перпендикуляры PK и РМ на катеты АС и ВС соответственно. Прямые АР и ВР пересекают катеты в точках A' и B' соответственно. Известно, что  SAPB' : SKPB' = m.  Найдите  SMPA' : SBPA'.

Прислать комментарий     Решение

Задача 66656

Темы:   [ Ортоцентр и ортотреугольник ]
[ Средняя линия треугольника ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Вспомогательные подобные треугольники ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 3+
Классы: 9,10,11

Автор: Хилько Д.

В остроугольном треугольнике $ABC$ проведены высоты $AH_1, BH_2, CH_3$, которые пересекаются в ортоцентре $H$. Точки $P$ и $Q$ симметричны $H_2$ и $H_3$ относительно $H$. Описанная окружность треугольника $PH_1Q$ пересекает во второй раз высоты $BH_2$ и $CH_3$ в точках $R$ и $S$. Докажите, что $RS$ – средняя линия треугольника $ABC$.
Прислать комментарий     Решение


Задача 53358

Темы:   [ Вспомогательные равные треугольники ]
[ Признаки равенства прямоугольных треугольников ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 8,9

Сторона AD прямоугольника ABCD в три раза больше стороны AB. Точки M и N делят AD на три равные части. Найдите  ∠AMB + ∠ANB + ∠ADB.

Прислать комментарий     Решение

Задача 56881

Темы:   [ Тригонометрические уравнения ]
[ Разложение на множители ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 8,9

Пусть  x = sin 18°.  Докажите, что  4x² + 2x = 1.

Прислать комментарий     Решение

Страница: << 90 91 92 93 94 95 96 >> [Всего задач: 512]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .