Страница:
<< 32 33 34 35
36 37 38 >> [Всего задач: 298]
а) Докажите, что точки с барицентрическими координатами
(
:
:
) и
(
:
:
)
изотомически сопряжены относительно треугольника
ABC.
б) Длины сторон треугольника
ABC равны
a,
b и
c.
Докажите, что точки с барицентрическими координатами
(
:
:
) и
(
a2/
:
b2/
:
c2/
)
изогонально сопряжены относительно треугольника
ABC.
Две прямые заданы в барицентрических координатах уравнениями
a1 +
b1 +
c1 = 0 и
a2 +
b2 +
c2 = 0.
а) Докажите, что точка пересечения этих прямых имеет барицентрические
координаты
б) Докажите, что эти прямые параллельны
тогда и только тогда, когда
На сторонах
AD и
DC выпуклого четырехугольника
ABCD взяты точки
P и
Q
так, что
ABP =
CBQ. Отрезки
AQ и
CP пересекаются в точке
E.
Докажите, что
ABE =
CBD.
Найдите уравнения в трилинейных координатах для: а) описанной окружности; б)
вписанной окружности; в) вневписанной окружности.
Найдите уравнение окружности девяти точек в трилинейных координатах.
Страница:
<< 32 33 34 35
36 37 38 >> [Всего задач: 298]