ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 298]      



Задача 57802

Тема:   [ Трилинейные координаты ]
Сложность: 6
Классы: 9,10

а) Докажите, что в трилинейных координатах любая окружность задается уравнением вида

(px + qy + rz)(x sin$\displaystyle \alpha$ + y sin$\displaystyle \beta$ + z sin$\displaystyle \gamma$) = yz sin$\displaystyle \alpha$ + xz sin$\displaystyle \beta$ + xy sin$\displaystyle \gamma$.


б) Докажите, что радикальная ось двух окружностей, заданных уравнениями такого вида, задается уравнением

p1x + q1y + r1z = p2x + q2y + r2z.


Прислать комментарий     Решение

Задача 57803

Тема:   [ Трилинейные координаты ]
Сложность: 6
Классы: 9,10

Докажите, что касательная к вписанной окружности в точке (x0 : y0 : z0) задается уравнением

$\displaystyle {\frac{x}{\sqrt{x_0}}}$cos$\displaystyle {\frac{\alpha }{2}}$ + $\displaystyle {\frac{y}{\sqrt{y_0}}}$cos$\displaystyle {\frac{\beta }{2}}$ + $\displaystyle {\frac{z}{\sqrt{z_0}}}$cos$\displaystyle {\frac{\gamma }{2}}$ = 0.


Прислать комментарий     Решение

Задача 76548

Тема:   [ Системы точек и отрезков (прочее) ]
Сложность: 6
Классы: 8,9

Расположите (На плоскости — прим. ред.) 4 точки так, чтобы при измерении всех попарных расстояний между ними получалось только два различных числа. Отыщите все такие расположения.
Прислать комментарий     Решение


Задача 109783

Темы:   [ Системы точек ]
[ Покрытия ]
[ Свойства параллельного переноса ]
[ Гомотетия помогает решить задачу ]
Сложность: 6
Классы: 10,11

На плоскости дано конечное множество точек X и правильный треугольник T . Известно, что любое подмножество X' множества X , состоящее из не более 9 точек, можно покрыть двумя параллельными переносами треугольника T . Докажите, что все множество X можно покрыть двумя параллельными переносами T .
Прислать комментарий     Решение


Задача 110795

Темы:   [ Теорема о группировке масс ]
[ Гомотетичные многоугольники ]
[ Теорема синусов ]
[ Ортоцентр и ортотреугольник ]
[ Четырехугольник: вычисления, метрические соотношения. ]
Сложность: 6+
Классы: 9,10,11

Авторы: Ганин Я., Rideau F.

Дан выпуклый четырехугольник ABCD . A' , B' , C' , D' – ортоцентры треугольников BCD , CDA , DAB , ABC . Докажите, что в четырехугольниках ABCD и A'B'C'D' соответствующие диагонали делятся точками пересечения в одном и том же отношении.
Прислать комментарий     Решение


Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 298]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .