Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 158]
В треугольнике
ABC проведены медианы
AF и
CE.
Докажите, что если
BAF =
BCE = 30
o, то треугольник
ABC правильный.
Даны непересекающиеся хорды
AB и
CD окружности
и точка
J на хорде
CD. Постройте на окружности точку
X
так, чтобы хорды
AX и
BX высекали на хорде
CD
отрезок
EF, делящийся точкой
J пополам.
Через общую точку
A окружностей
S1 и
S2
проведите прямую
l так, чтобы разность длин хорд,
высекаемых на
l окружностями
S1 и
S2 имела заданную
величину
a.
|
|
Сложность: 5 Классы: 8,9,10,11
|
На сторонах правильного девятиугольника $ABCDEFGHI$ во внешнюю сторону построили треугольники $XAB$, $YBC$, $ZCD$ и $TDE$. Известно, что углы $X$, $Y$, $Z$, $T$ этих треугольников равны $20^{\circ}$ каждый, а среди углов $XAB$, $YBC$, $ZCD$ и $TDE$ каждый следующий на $20^{\circ}$ больше предыдущего. Докажите, что точки $X$, $Y$, $Z$, $T$ лежат на одной окружности.
|
|
Сложность: 5 Классы: 8,9,10,11
|
Игра в "супершахматы" ведётся на доске размером 30×30, и в ней участвуют 20 разных фигур, каждая из которых ходит по своим правилам. Известно, однако, что
1) любая фигура с любого поля бьёт не более 20 полей и
2) если фигуру сдвинуть на несколько полей, то битые поля соответственно сдвигаются (может быть, исчезают за пределы поля).
Докажите, что
а) любая фигура F бьёт данное поле Х не более, чем с 20 полей;
б) можно расставить на доске все 20 фигур так, чтобы ни одна из них не била другую.
Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 158]