Страница:
<< 32 33 34 35
36 37 38 >> [Всего задач: 1026]
|
|
Сложность: 4 Классы: 8,9,10
|
Дана прямая MN и две точки A и B по одну сторону от нее. Постройте на прямой MN точку X так, что ∠AXM = 2∠BXN.
Постройте треугольник по данным серединам двух
сторон и прямой, на которой лежит биссектриса, проведенная
к одной из этих сторон.
Докажите, что площадь любого выпуклого четырехугольника не
превосходит полусуммы произведений противоположных сторон.
Дана прямая
l и две точки
A и
B по одну
сторону от нее. Найдите на прямой
l точку
X так, чтобы
длина ломаной
AXB была минимальна.
Даны три прямые
a,
b,
c. Докажите, что композиция симметрий
ScoSboSa является симметрией относительно некоторой прямой тогда
и только тогда, когда данные прямые пересекаются в одной точке.
Страница:
<< 32 33 34 35
36 37 38 >> [Всего задач: 1026]