ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) Пусть P — точка пересечения прямых AB и A1B1. Докажите, что если среди точек A, B, A1, B1 и P нет совпадающих, то общая точка описанных окружностей треугольников PAA1 и PBB1 является центром поворотной гомотетии, переводящей точку A в A1, а точку B в B1, причем такая поворотная гомотетия единственна. б) Докажите, что центром поворотной гомотетии, переводящей отрезок AB в отрезок BC, является точка пересечения окружности, проходящей через точку A и касающейся прямой BC в точке B, и окружности, проходящей через точку C и касающейся прямой AB в точке B. ![]() |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 201]
Прямые у = kx + b, у = 2kx + 2b и у = bx + k различны и пересекаются в одной точке. Какими могут быть ее координаты?
Решить систему
У кассира было 30 монет: 10, 15 и 20 копеек на сумму 5 рублей. Докажите, что 20-копеечных монет у него было больше, чем 10-копеечных.
Найти все действительные решения уравнения с 4 неизвестными: x2 + y2 + z2 + t2 = x(y + z + t).
Существуют ли три различных действительных числа, каждое из которых в сумме с произведением двух оставшихся дает одно и то же число?
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 201] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |