Страница:
<< 91 92 93 94
95 96 97 >> [Всего задач: 694]
|
|
Сложность: 4 Классы: 8,9,10
|
На окружности даны 10 точек. Сколькими способами можно провести пять отрезков, не имеющих общих точек, с концами в данных точках?
|
|
Сложность: 4 Классы: 8,9,10
|
Числовая последовательность A1, A2, ..., An, ... определена равенствами A1 = 1, A2 = – 1, An = – An–1 – 2An–2 (n ≥ 3).
Докажите, что при любом натуральном n число
является полным квадратом.
|
|
Сложность: 4 Классы: 9,10,11
|
Пусть a0 – целое, a1, ..., an – натуральные числа. Определим две последовательности
P–1 = 1, P0 = a0, Pk = akPk–1 + Pk–2 (1 ≤ k ≤ n); Q–1 = 0, Q0 = 1, Qk = akQk–1 + Qk–2 (1 ≤ k ≤ n).
Дроби Pk/Qk называются подходящими дробями к числу [a0; a1, a2, ..., an].
Докажите, что построенные последовательности для k = 0, 1, ..., n обладают следующими свойствами:
а) Pk/Qk = [a0; a1, a2,..., ak];
б) PkQk–1 – Pk–1Qk = (–1)k+1;
в) (Pk, Qk) = 1.
|
|
Сложность: 4 Классы: 10,11
|
Докажите, что многочлен P(x) = (xn+1 – 1)(xn+2 – 1)...(xn+m – 1) делится на Q(x) = (x – 1)(x2 – 1)...(xm – 1).
|
|
Сложность: 4 Классы: 9,10,11
|
Последовательность многочленов P0(x) = 1, P1(x) = x, P2(x) = x² – 1, ... задается условием
Pn+1(x) = xPn(x) – Pn–1(x).
Докажите, что уравнение P100(x) = 0 имеет 100 различных действительных корней на отрезке [–2, 2]. Что это за корни?
Страница:
<< 91 92 93 94
95 96 97 >> [Всего задач: 694]