Страница: 1
2 3 >> [Всего задач: 12]
а) Докажите, что композиция двух центральных симметрий является
параллельным переносом.
б) Докажите, что композиция параллельного переноса и центральной
симметрии (в обоих порядках) является центральной симметрией.
Докажите, что если точку отразить симметрично относительно точек
O1,
O2 и
O3, а затем еще раз отразить симметрично относительно этих
же точек, то она вернется на место.
Существуют фигуры, имеющие бесконечное множество центров
симметрии (например, полоса между двумя параллельными прямыми).
Может ли фигура иметь более одного, но конечное число центров
симметрии?
|
|
Сложность: 4- Классы: 8,9,10
|
Кузнечик вначале сидит в точке M плоскости Oxy вне квадрата
0 ≤ x ≤ 1, 0 ≤ y ≤ 1 (координаты M – нецелые, расстояние от M до центра квадрата равно d). Кузнечик прыгает в точку, симметричную M относительно самой правой (с точки зрения кузнечика) вершины квадрата. Докажите, что за несколько таких прыжков кузнечик не сможет удалиться от центра квадрата более чем на 10d.
|
|
Сложность: 4+ Классы: 9,10,11
|
Как известно, Луна вращается вокруг Земли. Будем считать, что Земля и Луна – это точки, а Луна вращается вокруг Земли по круговой орбите с периодом один оборот в месяц. Летающая тарелка находится в плоскости лунной орбиты. Она может перемещаться прыжками через Луну и Землю: из старого места (точки А) она моментально появляется в новом (в точке A') так, что в середине отрезка АA' находится или Луна, или Земля. Между прыжками летающая тарелка неподвижно висит в космическом пространстве.
а) Определите, какое минимальное количество прыжков потребуется летающей тарелке, чтобы допрыгнуть из любой точки внутри лунной орбиты до любой другой точки внутри лунной орбиты.
б) Докажите, что летающая тарелка, используя неограниченное количество прыжков, может допрыгнуть из любой точки внутри лунной орбиты до любой другой точки внутри лунной орбиты за любой промежуток времени, например, за секунду.
Страница: 1
2 3 >> [Всего задач: 12]