Страница:
<< 26 27 28 29 30 31
32 >> [Всего задач: 158]
|
|
Сложность: 5- Классы: 9,10,11
|
Касательные к описанной окружности треугольника ABC в точках A и B пересекаются в точке D. Окружность, проходящая через проекции D на прямые BC, CA, AB, повторно пересекает AB в точке C'. Аналогично строятся точки A', B'. Докажите, что прямые AA', BB', CC' пересекаются в одной точке.
|
|
Сложность: 5- Классы: 9,10,11
|
Пусть A' – точка касания вневписанной окружности треугольника ABC со стороной BC. Прямая a проходит через точку A' и параллельна биссектрисе внутреннего угла A. Аналогично строятся прямые b и c. Докажите, что прямые a, b и c пересекаются в одной точке.
|
|
Сложность: 7- Классы: 9,10,11
|
Четырехугольник
ABCD вписан в окружность с
центром
O . Точки
C' ,
D' симметричны ортоцентрам
треугольников
ABD и
ABC относительно
O . Докажите, что если
прямые
BD и
BD' симметричны относительно биссектрисы угла
B ,
то прямые
AC и
AC' симметричны относительно биссектрисы угла
A .
Точка К – середина гипотенузы АВ прямоугольного равнобедренного треугольника ABC. Точки L и М выбраны на катетах ВС и АС соответственно так, что BL = СМ. Докажите, что треугольник LMK – также прямоугольный равнобедренный.
|
|
Сложность: 3+ Классы: 8,9,10
|
Хулиганы Джей и Боб на уроке черчения нарисовали головастиков
(четыре окружности на рисунке - одного радиуса, треугольник - равносторонний,
горизонтальная сторона этого треугольника - диаметр окружности). Какой из
головастиков имеет бо'льшую площадь?
Страница:
<< 26 27 28 29 30 31
32 >> [Всего задач: 158]