Страница:
<< 66 67 68 69
70 71 72 >> [Всего задач: 411]
|
|
Сложность: 5+ Классы: 8,9,10
|
В стране 2000 городов, некоторые пары городов соединены дорогами. Известно, что через любой город проходит не более N различных несамопересекающихся циклических маршрутов нечётной длины. Докажите, что страну можно разделить на N + 2 республики так, чтобы никакие два города из одной республики не были соединены дорогой.
|
|
Сложность: 5+ Классы: 9,10,11
|
Дана последовательность неотрицательных чисел
a1 ,
a2 ,
an . Для любого
k от 1 до
n обозначим через
mk величину
l=1,2,..,k .
Докажите, что при любом
α>0
число тех
k , для которых
mk>α , меньше, чем
a1+a2+...+an α.
|
|
Сложность: 5+ Классы: 8,9,10,11
|
У Ани и Бори было по длинной полосе бумаги.
На одной из них была написана буква А, на другой – Б. Каждую минуту один
из них (не обязательно по очереди) приписывает справа или слева к слову на своей полосе
слово с полосы другого. Докажите, что через сутки слово с Аниной полосы
можно будет разрезать на 2 части и переставить их местами так, что
получится то же слово, записанное в обратном порядке.
|
|
Сложность: 6+ Классы: 8,9,10,11
|
Все натуральные числа, в десятичной записи которых не больше
n цифр, разбили на два множества следующим образом. В первое множество входят числа с нечётной суммой цифр, а во
второе — c чётной суммой цифр. Докажите, что для любого натурального числа
k £ n сумма
k-х степеней всех чисел первого множества равна сумме
k-х степеней всех чисел второго множества.
|
|
Сложность: 7- Классы: 8,9,10
|
Окружность разбита точками
A1,
A2,...,
An на
n равных дуг, каждая из которых окрашена в какой-то цвет. Две дуги окружности (с концами в точках разбиения) называем одинаково окрашенными, если при некотором повороте окружности одна из них полностью, включая цвета всех дуг, совпадает с другой. (Например, на рисунке дуги
A2A6 и
A6A10 одинаково окрашены.)
Докажите, что если для каждой точки разбиения Ak можно указать две непересекающиеся одинаково окрашенные дуги с общим концом Ak, то всю окружность можно разбить на несколько одинаково окрашенных дуг, то есть окраска периодическая. Рассмотрите сначала случай, когда красок всего две, скажем красная и чёрная.
Страница:
<< 66 67 68 69
70 71 72 >> [Всего задач: 411]