ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 78 79 80 81 82 83 84 >> [Всего задач: 590]      



Задача 73743

Темы:   [ Средние величины ]
[ Линейные неравенства и системы неравенств ]
Сложность: 4
Классы: 9,10,11

Известно, что разность между наибольшим и наименьшим из чисел x1, x2, x3, ..., x9, x10 равна 1. Какой  а) наибольшей;  б) наименьшей может быть разность между наибольшим и наименьшим из 10 чисел x1,  ½ (x1 + x2),  ⅓ (x1 + x2 + x3),  ...,  1/10 (x1 + x2 + ... + x10)?
в) Каков будет ответ, если чисел не 10, а n?

Прислать комментарий     Решение

Задача 73779

Темы:   [ Средние величины ]
[ Квадратичные неравенства (несколько переменных) ]
[ Процессы и операции ]
Сложность: 4
Классы: 8,9,10

Даны два набора из n вещественных чисел:  a1, a2, ..., an  и  b1, b2, ..., bn.  Докажите, что если выполняется хотя бы одно из двух условий:
  а) из  ai < aj  следует, что  bi ≤ bj;
  б) из  ai < a < aj,  где  a = 1/n (a1 + a2 + ... + an),  следует, что  bi ≤ bj,
то верно неравенство   n(a1 b1 + a2b2 + ... + anbn) ≥ (a1 + a2 + ... + an)(b1 + b2 + ... + bn).

Прислать комментарий     Решение

Задача 78800

Темы:   [ Упорядочивание по возрастанию (убыванию) ]
[ Линейные неравенства и системы неравенств ]
Сложность: 4
Классы: 11

Даны два набора чисел: a1, ..., an и b1, ..., bn. Расположим числа ak в возрастающем порядке, а числа bk – в убывающем порядке. Получатся наборы
A1 ≤ ... ≤ AnB1 ≥ ... ≥ Bn.  Доказать, что  max{a1 + b1, ..., an + bn} ≥ max{A1 + B1, ..., An + Bn}.

Прислать комментарий     Решение

Задача 79414

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Алгебраические неравенства (прочее) ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 9,10,11

Считая известной формулу     доказать, что для различных натуральных чисел a1, a2, ..., an справедливо неравенство     Возможно ли равенство для каких-нибудь различных натуральных чисел a1, a2, ..., an?

Прислать комментарий     Решение

Задача 97765

Темы:   [ Доказательство от противного ]
[ Классические неравенства (прочее) ]
[ Геометрические неравенства (прочее) ]
Сложность: 4
Классы: 8,9,10

В квадрате со стороной 1 проведено конечное количество отрезков, параллельных его сторонам. Отрезки могут пересекать друг друга. Сумма длин проведенных отрезков равна 18. Докажите, что среди частей, на которые разбивается квадрат этими отрезками, найдётся такая, площадь которой не меньше 0,01.

Прислать комментарий     Решение

Страница: << 78 79 80 81 82 83 84 >> [Всего задач: 590]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .