Страница:
<< 64 65 66 67
68 69 70 >> [Всего задач: 590]
|
|
Сложность: 3+ Классы: 10,11
|
Незнайка знаком только с десятичными логарифмами и считает, что логарифм суммы двух чисел равен произведению их логарифмов, а логарифм разности двух чисел равен частному их логарифмов. Может ли Незнайка подобрать хотя бы одну пару чисел, для которой действительно верны одновременно оба этих равенства?
|
|
Сложность: 3+ Классы: 9,10,11
|
Многочлен x³ + px² + qx + r имеет на интервале (0, 2) три корня. Докажите, что – 2 < p + q + r < 0.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Известно, что в десятичной записи числа 229 все цифры различны. Есть ли среди них цифра 0?
Дана последовательность чисел 1, 2, 3, 5, 8, 13, 21, ..., в которой каждое
число, начиная с третьего, равно сумме двух предыдущих. В этой
последовательности выбрано восемь чисел подряд. Докажите, что их сумма не равна
никакому числу рассматриваемой последовательности.
Можно ли записать в строку 20 чисел так, чтобы сумма любых трёх
последовательных чисел была положительна, а сумма всех 20 чисел была
отрицательна?
Страница:
<< 64 65 66 67
68 69 70 >> [Всего задач: 590]