Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 411]
|
|
Сложность: 4 Классы: 8,9,10,11
|
На доске написаны 2$n$ последовательных целых чисел. За ход можно разбить написанные числа на пары произвольным образом и каждую пару чисел заменить на их сумму и разность (не обязательно вычитать из большего числа меньшее, все замены происходят одновременно). Докажите, что на доске больше никогда не появятся 2$n$ последовательных чисел.
|
|
Сложность: 4 Классы: 9,10,11
|
Отрезок длиной 3
n разбивается на три равные части. Первая и третья из них
называются отмеченными. Каждый из отмеченных отрезков разбивается на три части,
из которых первая и третья снова называются отмеченными и т.д. до тех пор, пока
не получатся отрезки длиной 1. Концы всех отмеченных отрезков называются
отмеченными точками. Доказать, что для любого целого
k(1
k3
n) можно
найти две отмеченные точки, расстояние между которыми равно
k.
|
|
Сложность: 4 Классы: 8,9,10
|
Докажите, что для любого натурального n ≥ 2 справедливо неравенство: .
|
|
Сложность: 4 Классы: 8,9,10
|
В соревновании участвуют 32 боксёра. Каждый боксёр в течение одного дня
может проводить только один бой. Известно, что все боксёры имеют разную силу,
и что сильнейший всегда выигрывает. Докажите, что за 15 дней можно определить место каждого боксёра.
(Расписание каждого дня соревнований составляется вечером накануне и в день
соревнований не изменяется.)
|
|
Сложность: 4 Классы: 7,8,9,10,11
|
В классе каждый болтун дружит хотя бы с одним молчуном.
При этом болтун молчит, если в кабинете находится нечетное число его друзей
– молчунов.
Докажите, что учитель может пригласить на факультатив не менее половины
класса так, чтобы все болтуны молчали.
Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 411]