Страница:
<< 10 11 12 13 14 15 16 [Всего задач: 79]
|
|
Сложность: 3+ Классы: 7,8,9
|
Дана ладья, которой разрешается делать ходы только длиной в одну клетку. Доказать, что она может обойти все клетки прямоугольной шахматной доски, побывав на каждой клетке ровно один раз, и вернуться в начальную клетку тогда и только тогда, когда число клеток на доске чётно.
|
|
Сложность: 5 Классы: 9,10,11
|
Внутри круга расположены точки A1, A2, ..., An, а на его границе – точки B1, B2, ..., Bn так, что отрезки A1B1, A2B2, ..., AnBn не пересекаются. Кузнечик может перепрыгнуть из точки Ai в точку Aj, если отрезок AiAj не пересекается ни с одним из отрезков AkBk, k ≠ i, j.
Докажите, что за несколько прыжков кузнечик сможет попасть из каждой точки Ap в любую точку Aq.
|
|
Сложность: 5 Классы: 9,10,11
|
В прямоугольную коробку с основанием m×n, где m и n – нечётные числа, уложены домино размера 2×1 так, что остался не покрыт только квадрат 1×1 (дырка) в углу коробки. Если доминошка прилегает к дырке короткой стороной, её разрешается сдвинуть вдоль себя на одну клетку, закрыв дырку (при этом открывается новая дырка). Докажите, что с помощью
таких передвижений можно перегнать дырку в любой другой угол.
|
|
Сложность: 4 Классы: 10,11
|
N³ единичных кубиков просверлены по диагонали и плотно нанизаны на нить, после чего нить связана в кольцо (то есть вершина первого кубика соединена с вершиной последнего). При каких N такое ожерелье из кубиков можно упаковать в кубическую коробку с ребром длины N?
Страница:
<< 10 11 12 13 14 15 16 [Всего задач: 79]