ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 76]      



Задача 65266

Темы:   [ Дискретное распределение ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Линейные неравенства и системы неравенств ]
Сложность: 3+
Классы: 8,9,10,11

На каждой из четырёх карточек написано натуральное число. Берут наугад две карточки и складывают числа на них. С равной вероятностью эта сумма может быть меньше 9, равна 9 и больше 9. Какие числа могут быть записаны на карточках?

Прислать комментарий     Решение

Задача 78079

Темы:   [ Числовые таблицы и их свойства ]
[ Осевая и скользящая симметрии (прочее) ]
[ Линейные неравенства и системы неравенств ]
Сложность: 3+
Классы: 8,9

64 неотрицательных числа, сумма которых равна 1956, расположены в форме квадратной таблицы: по восемь чисел в каждой строке и в каждом столбце. Сумма чисел, стоящих на одной из диагоналей, равна 112. Числа, расположенные симметрично относительно этой диагонали, равны. Докажите, что сумма чисел в каждом столбце меньше 1035.

Прислать комментарий     Решение

Задача 88186

Темы:   [ Задачи с неравенствами. Разбор случаев ]
[ Взвешивания ]
[ Линейные неравенства и системы неравенств ]
Сложность: 3+
Классы: 5,6,7,8

Дама сдавала в багаж рюкзак, чемодан, саквояж и корзину. Известно, что чемодан весит больше, чем рюкзак;  саквояж и рюкзак весят больше, чем чемодан и корзина;  корзина и саквояж весят столько же, сколько чемодан и рюкзак. Перечислите вещи дамы в порядке убывания их веса.

Прислать комментарий     Решение

Задача 107700

Темы:   [ Неравенство треугольника (прочее) ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Линейные неравенства и системы неравенств ]
[ Доказательство от противного ]
[ Числа Фибоначчи ]
Сложность: 3+
Классы: 7,8,9

Имеется 10 отрезков, причём известно, что длина каждого – целое число сантиметров. Два самых коротких отрезка – по сантиметру, самый длинный – 50 см. Докажите, что среди отрезков найдутся три, из которых можно составить треугольник.

Прислать комментарий     Решение

Задача 116578

Темы:   [ Взвешивания ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Линейные неравенства и системы неравенств ]
Сложность: 3+
Классы: 7,8,9

Даны 11 гирь разного веса (одинаковых нет), каждая весит целое число граммов. Известно, что как ни разложить гири (все или часть) на две чаши, чтобы гирь на них было не поровну, всегда перевесит чаша, на которой гирь больше. Докажите, что хотя бы одна из гирь весит более 35 граммов.

Прислать комментарий     Решение

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 76]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .