ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В выпуклом четырёхугольнике ABCD: ∠ВАС = 20°, ∠ВСА = 35°, ∠ВDС = 40°, ∠ВDА = 70°. ![]() ![]() Пусть AD и AE — биссектрисы внутреннего и внешнего углов треугольника ABC и Sa — окружность с диаметром DE, окружности Sb и Sc определяются аналогично. Докажите, что: а) окружности Sa, Sb и Sc имеют две общие точки M и N, причем прямая MN проходит через центр описанной окружности треугольника ABC; б) проекции точки M (и точки N) на стороны треугольника ABC образуют правильный треугольник. ![]() ![]() |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 172]
Точки A1, B1, C1 лежат соответственно на сторонах BC, AC, AB треугольника ABC, причём отрезки AA1, BB1, CC1 пересекаются в точке K.
В треугольнике ABC проведены высоты AE и CD. Найдите сторону AB, если BD = 18, BC = 30, AE = 20.
На сторонах AB, BC и AC треугольника ABC взяты соответственно точки M, N и K так, что AM : MB = 2 : 3, AK : KC = 2 : 1, BN : NC = 1 : 2. В каком отношении прямая MK делит отрезок AN?
Найдите площадь равнобедренного треугольника, если высота, опущенная на основание, равна 10, а высота, опущенная на боковую сторону, равна 12.
Квадрат со стороной 1 разрезали на прямоугольники, у каждого из которых отметили одну сторону.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 172] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |