Страница:
<< 21 22 23 24
25 26 27 >> [Всего задач: 204]
|
|
Сложность: 3+ Классы: 10,11
|
На кубе отмечены вершины и центры граней, а также проведены диагонали всех
граней. Можно ли по отрезкам этих диагоналей обойти все отмеченные точки,
побывав в каждой из них ровно по одному разу?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Куб 20×20×20 составлен из 2000 кирпичей размером 2×2×1.
Докажите, что его можно проткнуть иглой так, чтобы игла прошла через две
противоположные грани и не уткнулась в кирпич.
|
|
Сложность: 3+ Классы: 7,8,9,10
|
Дан куб с ребром длины n см. В нашем распоряжении имеется длинный кусок
изоляционной ленты шириной 1 см. Требуется обклеить куб лентой, при этом лента
может свободно переходить через ребро на другую грань, по грани она должна идти
по прямой параллельно ребру и не свисать с грани вбок. На сколько кусков необходимо разрезать ленту, чтобы обклеить куб?
|
|
Сложность: 3+ Классы: 8,9,10
|
Шесть игральных костей нанизали на спицу так, что каждая может вращаться
независимо от остальных (протыкаем через центры противоположных граней). Спицу
положили на стол и прочитали число, образованное цифрами на верхних гранях
костей. Докажите, что можно так повернуть кости, чтобы это число делилось на 7.
(На гранях стоят цифры от 1 до 6, сумма цифр на противоположных гранях равна 7.)
|
|
Сложность: 3+ Классы: 8,9,10
|
Куб со стороной 20 разбит на 8000 единичных кубиков, и в каждом кубике
записано число. Известно, что в каждом столбике из 20 кубиков, параллельном
ребру куба, сумма чисел равна 1 (рассматриваются столбики всех трёх
направлений). В некотором кубике записано число 10. Через этот кубик проходит
три слоя 1×20×20, параллельных граням куба. Найдите сумму всех чисел вне этих слоёв.
Страница:
<< 21 22 23 24
25 26 27 >> [Всего задач: 204]