ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Шесть игральных костей нанизали на спицу так, что каждая может вращаться независимо от остальных (протыкаем через центры противоположных граней). Спицу положили на стол и прочитали число, образованное цифрами на верхних гранях костей. Докажите, что можно так повернуть кости, чтобы это число делилось на 7. (На гранях стоят цифры от 1 до 6, сумма цифр на противоположных гранях равна 7.) ![]() ![]() Можно ли увезти из каменоломни 50 камней, массы которых 370 кг, 372 кг, 374 кг, ..., 468 кг (арифметическая прогрессия с разностью 2 кг), на семи трёхтонках? ![]() ![]() |
Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 330]
В прямоугольную таблицу из m строк и n столбцов записаны mn положительных чисел. Найдём в каждом столбце произведение чисел и сложим все n таких произведений. Докажите, что если переставить числа в каждой строке в порядке возрастания, то сумма аналогичных произведений будет не меньше, чем в первоначальной. Решите эту задачу для
Для всякого ли натурального n можно расставить первые n натуральных чисел в таком порядке, чтобы ни для каких двух чисел их полусумма не равнялась ни одному из чисел, расположенных между ними?
На сколько частей могут разделить пространство n плоскостей?
Дано число H = 2·3·5·7·11·13·17·19·23·29·31·37 (произведение простых чисел). Пусть 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, ..., H – все его делители, выписанные в порядке возрастания. Под рядом делителей выпишем ряд из единиц и минус единиц по следующему правилу: под единицей 1, под числом, которое разлагается на чётное число простых сомножителей, 1, и под числом, которое разлагается на нечётное число простых сомножителей, –1. Доказать, что сумма чисел полученного ряда равна 0.
Известно, что an – bn делится на n (a, b, n – натуральные числа, a ≠ b). Доказать, что
Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 330] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |